
SCAWK DOC

Charles-Albert Lehalle

printed the July 6, 2001

Contents

1 Scawk 1

2 Main functions 2

3 Global variables 2

4 Usefull classical Awk functions 2

5 Other usefull functions 4

1 Scawk

Scawk is a port of awk to scheme. The implementation of scheme used is
siod, but it is planned to extend scawk to other scheme implementations.

The interressant point with siod is that a scheme file can be compiled into
an executable one. So I use scawk as an exec file for WinNT (scawk.exe).

I tried to port all the classical functions of awk to scawk. In fact I ported
the functions I usually used in awk. Feel free to port other functions. I will
try to release new versions of scawk including new features form other people.

You can send me e-mails to lehalle@earthling.net.

Actually you can invoke scawk into a scheme file as : (process ’(”:f”
”scawk-cmd-file.sc” ”data-file.txt”)) or using scawk.exe as : scawk.exe :f

1

scawk-cmd-file.sc data-file.txt where scawk-cmd-file.sc contains the defini-
tion of a function *main* and optionaly *begin* and *end*.

2 Main functions

The function *begin* can be redefined it will be called before the opening of
the target file

The fonction *main* can be define it will be called on each line of the
target file some global variables will be usable

The function *end* can be redefined it will be called after the target file
has been readen

3 Global variables

As for awk, each line is splitted into tokens using SPACE as separator

The global variable *nf* contains the number of fields

• (\$ n) returns the n-th element of the line ($ 0) is the complete line,
and ($ n) is the nth token of the line

• The function (form a b ...)

The default output of display is stdout

4 Usefull classical Awk functions

• The (split string separator) function returns a list containing the
string tokenized using the specified separator. The separator is a string and
can have a length of more than 1.

(split "azerdytacvjhagygakj kjah iaug auhkj" "a")

> ("" "zerdyt" "cvjh" "gyg" "kj kj" "h i" "ug " "uhkj")

(split "azerdytacvjhazegygakj kzejah iaug auhkj" "ze")

> ("a" "rdytacvjha" "gygakj k" "jah iaug auhkj")

2

• The (substr string begin end) returns the subtring of string begin-
ing at begin and ending at end

(substr "garzol" 2 3)

> "r"

(substr "garzol" 0 2)

> "ga"

(substr "garzol" 0 20)

ERROR: bad end index (see errobj)

(substr "garzol" -1 2)

ERROR: bad start index (see errobj)

• The (index string key) returns the index of key in the specified
string. If it does not exist, return #false

(index "garbure" "rb")

> 2

• The (decompose string key) function returns a list of two elements
: the substring of the specified string before the key, and the substring after
the key. If the key is not in the string, the second element is #false.

(decompose "garbure" "rb")

> ("ga" "ure")

• The (sub string key1 key2) function substitutes the first occurence
of key1 by key2 into the specified string.

(sub "barzol" "zz" "XXX")

> "barXXXl"

• The (char-at string n) returns the nthe char of the string. The first
char has index 1.

(char-at "garzol" 2)

> "a"

3

5 Other usefull functions

They are functions I usally used in awk (I have a personal library) with such
functions for awk. HEre I decided to include them into scawk. Enjoy using
them.

• The function (between string k-beg k-end) returns the substring of
string that is between k-beg and k-end. If k-beg or k-end is not into string,
returns #false.

(between "garbure garzol barbure" "bu" "zo")

> "re gar"

• The function (substring+ string key) returns the part of string that
is after key. If key is not in the string, returns #false.

(substring+ "garzol" "rz")

> "ol"

• The function (substring- string key) returns the part of string that
is before key. See substring+.

• The function (without- string key) remove all the occurences of key
at the begining of the string. Usefull to remove useless spaces.

(without- " rtyfygv" " ")

> "rtyfygv"

• (string-revert string) revert the string.

(string-revert "charles")

> "selrahc"

4

• The function (without- string key) remove all the occurences of key
at the end of the string. See without+.

• The function (without string key) remove all the occurences of key
at the begining and at the end of the string.

• The function (without-tags string) remove XML tags from string.
Some implemntation of XML-DOM for scheme exist ; use it for more complex
operations on XML files. It is just usefull to convert a HTML file into a TXT
one.

(without-tags "this is a test..")

> "this is a test.."

• the function (display string [filename|port]) is like the awk print
function. The string is written at stdout if there is not a second argument.
If the second argument is present it is : a filename (string) then the string is
append to a file with this name (which is created if it does not exist) ; or a
port name that has been previously opend by the siod scheme (fopen fname
mode) function.

• The function (string-length string) repace the length function of
awk because length applies to lists here. I plan to implement a polymorph
version of length but I do not found the time to do it actually.

• The function (string->list string) is used to convert a string into
a list of string of length 1 (as characters).

5

Index

\$, 2

between, 4

char-at, 3

decompose, 3
display, 5

form, 2

index, 3

split, 2
string->list, 5
string-length, 5
string-revert, 4
sub, 3
substr, 3
substring+, 4
substring-, 4

without, 5
without-, 4, 5
without-tags, 5

6

